TSTP Solution File: SWV436^4 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SWV436^4 : TPTP v8.1.2. Released v3.6.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n031.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 21:51:30 EDT 2023

% Result   : Theorem 0.21s 0.57s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.14/0.13  % Problem    : SWV436^4 : TPTP v8.1.2. Released v3.6.0.
% 0.14/0.14  % Command    : do_cvc5 %s %d
% 0.15/0.35  % Computer : n031.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit   : 300
% 0.15/0.35  % WCLimit    : 300
% 0.15/0.35  % DateTime   : Tue Aug 29 05:27:26 EDT 2023
% 0.15/0.35  % CPUTime    : 
% 0.21/0.50  %----Proving TH0
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  % File     : SWV436^4 : TPTP v8.1.2. Released v3.6.0.
% 0.21/0.50  % Domain   : Software Verification (Security)
% 0.21/0.50  % Problem  : ICL^B logic mapping to modal logic implies that Example 3 holds
% 0.21/0.50  % Version  : [Ben08] axioms : Augmented.
% 0.21/0.50  % English  :
% 0.21/0.50  
% 0.21/0.50  % Refs     : [GA08]  Garg & Abadi (2008), A Modal Deconstruction of Access
% 0.21/0.50  %          : [Ben08] Benzmueller (2008), Automating Access Control Logics i
% 0.21/0.50  %          : [BP09]  Benzmueller & Paulson (2009), Exploring Properties of
% 0.21/0.50  % Source   : [Ben08]
% 0.21/0.50  % Names    :
% 0.21/0.50  
% 0.21/0.50  % Status   : Theorem
% 0.21/0.50  % Rating   : 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v6.1.0, 0.71 v5.5.0, 0.67 v5.4.0, 0.40 v5.2.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.60 v4.1.0, 0.67 v3.7.0
% 0.21/0.50  % Syntax   : Number of formulae    :   63 (  24 unt;  33 typ;  24 def)
% 0.21/0.50  %            Number of atoms       :  109 (  24 equ;   0 cnn)
% 0.21/0.50  %            Maximal formula atoms :   12 (   3 avg)
% 0.21/0.50  %            Number of connectives :   89 (   3   ~;   1   |;   2   &;  82   @)
% 0.21/0.50  %                                         (   0 <=>;   1  =>;   0  <=;   0 <~>)
% 0.21/0.50  %            Maximal formula depth :    8 (   2 avg)
% 0.21/0.50  %            Number of types       :    3 (   1 usr)
% 0.21/0.50  %            Number of type conns  :  127 ( 127   >;   0   *;   0   +;   0  <<)
% 0.21/0.50  %            Number of symbols     :   41 (  38 usr;   9 con; 0-3 aty)
% 0.21/0.50  %            Number of variables   :   49 (  39   ^;   6   !;   4   ?;  49   :)
% 0.21/0.50  % SPC      : TH0_THM_EQU_NAR
% 0.21/0.50  
% 0.21/0.50  % Comments : 
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Include axioms of multi modal logic
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Our possible worlds are are encoded as terms the type  $i;
% 0.21/0.50  %----Here is a constant for the current world:
% 0.21/0.50  thf(current_world,type,
% 0.21/0.50      current_world: $i ).
% 0.21/0.50  
% 0.21/0.50  %----Modal logic propositions are then becoming predicates of type ( $i> $o);
% 0.21/0.50  %----We introduce some atomic multi-modal logic propositions as constants of
% 0.21/0.50  %----type ( $i> $o):
% 0.21/0.50  thf(prop_a,type,
% 0.21/0.50      prop_a: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(prop_b,type,
% 0.21/0.50      prop_b: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(prop_c,type,
% 0.21/0.50      prop_c: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  %----The idea is that an atomic multi-modal logic proposition P (of type
% 0.21/0.50  %---- $i >  $o) holds at a world W (of type  $i) iff W is in P resp. (P @ W)
% 0.21/0.50  %----Now we define the multi-modal logic connectives by reducing them to set
% 0.21/0.50  %----operations
% 0.21/0.50  %----mfalse corresponds to emptyset (of type $i)
% 0.21/0.50  thf(mfalse_decl,type,
% 0.21/0.50      mfalse: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mfalse,definition,
% 0.21/0.50      ( mfalse
% 0.21/0.50      = ( ^ [X: $i] : $false ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mtrue corresponds to the universal set (of type $i)
% 0.21/0.50  thf(mtrue_decl,type,
% 0.21/0.50      mtrue: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mtrue,definition,
% 0.21/0.50      ( mtrue
% 0.21/0.50      = ( ^ [X: $i] : $true ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mnot corresponds to set complement
% 0.21/0.50  thf(mnot_decl,type,
% 0.21/0.50      mnot: ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mnot,definition,
% 0.21/0.50      ( mnot
% 0.21/0.50      = ( ^ [X: $i > $o,U: $i] :
% 0.21/0.50            ~ ( X @ U ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mor corresponds to set union
% 0.21/0.50  thf(mor_decl,type,
% 0.21/0.50      mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mor,definition,
% 0.21/0.50      ( mor
% 0.21/0.50      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.21/0.50            ( ( X @ U )
% 0.21/0.50            | ( Y @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mand corresponds to set intersection
% 0.21/0.50  thf(mand_decl,type,
% 0.21/0.50      mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mand,definition,
% 0.21/0.50      ( mand
% 0.21/0.50      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.21/0.50            ( ( X @ U )
% 0.21/0.50            & ( Y @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mimpl defined via mnot and mor
% 0.21/0.50  thf(mimpl_decl,type,
% 0.21/0.50      mimpl: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mimpl,definition,
% 0.21/0.50      ( mimpl
% 0.21/0.50      = ( ^ [U: $i > $o,V: $i > $o] : ( mor @ ( mnot @ U ) @ V ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----miff defined via mand and mimpl
% 0.21/0.50  thf(miff_decl,type,
% 0.21/0.50      miff: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(miff,definition,
% 0.21/0.50      ( miff
% 0.21/0.50      = ( ^ [U: $i > $o,V: $i > $o] : ( mand @ ( mimpl @ U @ V ) @ ( mimpl @ V @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mbox
% 0.21/0.50  thf(mbox_decl,type,
% 0.21/0.50      mbox: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mbox,definition,
% 0.21/0.50      ( mbox
% 0.21/0.50      = ( ^ [R: $i > $i > $o,P: $i > $o,X: $i] :
% 0.21/0.50          ! [Y: $i] :
% 0.21/0.50            ( ( R @ X @ Y )
% 0.21/0.50           => ( P @ Y ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mdia
% 0.21/0.50  thf(mdia_decl,type,
% 0.21/0.50      mdia: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mdia,definition,
% 0.21/0.50      ( mdia
% 0.21/0.50      = ( ^ [R: $i > $i > $o,P: $i > $o,X: $i] :
% 0.21/0.50          ? [Y: $i] :
% 0.21/0.50            ( ( R @ X @ Y )
% 0.21/0.50            & ( P @ Y ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----For mall and mexists, i.e., first order modal logic, we declare a new
% 0.21/0.50  %----base type individuals
% 0.21/0.50  thf(individuals_decl,type,
% 0.21/0.50      individuals: $tType ).
% 0.21/0.50  
% 0.21/0.50  %----mall
% 0.21/0.50  thf(mall_decl,type,
% 0.21/0.50      mall: ( individuals > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mall,definition,
% 0.21/0.50      ( mall
% 0.21/0.50      = ( ^ [P: individuals > $i > $o,W: $i] :
% 0.21/0.50          ! [X: individuals] : ( P @ X @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----mexists
% 0.21/0.50  thf(mexists_decl,type,
% 0.21/0.50      mexists: ( individuals > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists,definition,
% 0.21/0.50      ( mexists
% 0.21/0.50      = ( ^ [P: individuals > $i > $o,W: $i] :
% 0.21/0.50          ? [X: individuals] : ( P @ X @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Validity of a multi modal logic formula can now be encoded as
% 0.21/0.50  thf(mvalid_decl,type,
% 0.21/0.50      mvalid: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mvalid,definition,
% 0.21/0.50      ( mvalid
% 0.21/0.50      = ( ^ [P: $i > $o] :
% 0.21/0.50          ! [W: $i] : ( P @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Satisfiability of a multi modal logic formula can now be encoded as
% 0.21/0.50  thf(msatisfiable_decl,type,
% 0.21/0.50      msatisfiable: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(msatisfiable,definition,
% 0.21/0.50      ( msatisfiable
% 0.21/0.50      = ( ^ [P: $i > $o] :
% 0.21/0.50          ? [W: $i] : ( P @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Countersatisfiability of a multi modal logic formula can now be encoded as
% 0.21/0.50  thf(mcountersatisfiable_decl,type,
% 0.21/0.50      mcountersatisfiable: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mcountersatisfiable,definition,
% 0.21/0.50      ( mcountersatisfiable
% 0.21/0.50      = ( ^ [P: $i > $o] :
% 0.21/0.50          ? [W: $i] :
% 0.21/0.50            ~ ( P @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Invalidity of a multi modal logic formula can now be encoded as
% 0.21/0.50  thf(minvalid_decl,type,
% 0.21/0.50      minvalid: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(minvalid,definition,
% 0.21/0.50      ( minvalid
% 0.21/0.50      = ( ^ [P: $i > $o] :
% 0.21/0.50          ! [W: $i] :
% 0.21/0.50            ~ ( P @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Include axioms of ICL logic
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----The encoding of ICL logic employs only one accessibility relation which
% 0.21/0.50  %----introduce here as a constant 'rel'; we don't need multimodal logic.
% 0.21/0.50  thf(rel_type,type,
% 0.21/0.50      rel: $i > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  %----ICL logic distiguishes between atoms and principals; for this we introduce
% 0.21/0.50  %----a predicate 'icl_atom' ...
% 0.21/0.50  thf(icl_atom_type,type,
% 0.21/0.50      icl_atom: ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_atom,definition,
% 0.21/0.50      ( icl_atom
% 0.21/0.50      = ( ^ [P: $i > $o] : ( mbox @ rel @ P ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %---- ... and also a predicate 'icl_princ'
% 0.21/0.50  thf(icl_princ_type,type,
% 0.21/0.50      icl_princ: ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_princ,definition,
% 0.21/0.50      ( icl_princ
% 0.21/0.50      = ( ^ [P: $i > $o] : P ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----ICL and connective
% 0.21/0.50  thf(icl_and_type,type,
% 0.21/0.50      icl_and: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_and,definition,
% 0.21/0.50      ( icl_and
% 0.21/0.50      = ( ^ [A: $i > $o,B: $i > $o] : ( mand @ A @ B ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----ICL or connective
% 0.21/0.50  thf(icl_or_type,type,
% 0.21/0.50      icl_or: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_or,definition,
% 0.21/0.50      ( icl_or
% 0.21/0.50      = ( ^ [A: $i > $o,B: $i > $o] : ( mor @ A @ B ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----ICL implication connective
% 0.21/0.50  thf(icl_impl_type,type,
% 0.21/0.50      icl_impl: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_impl,definition,
% 0.21/0.50      ( icl_impl
% 0.21/0.50      = ( ^ [A: $i > $o,B: $i > $o] : ( mbox @ rel @ ( mimpl @ A @ B ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----ICL true connective
% 0.21/0.50  thf(icl_true_type,type,
% 0.21/0.50      icl_true: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_true,definition,
% 0.21/0.50      icl_true = mtrue ).
% 0.21/0.50  
% 0.21/0.50  %----ICL false connective
% 0.21/0.50  thf(icl_false_type,type,
% 0.21/0.50      icl_false: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_false,definition,
% 0.21/0.50      icl_false = mfalse ).
% 0.21/0.50  
% 0.21/0.50  %----ICL says connective
% 0.21/0.50  thf(icl_says_type,type,
% 0.21/0.50      icl_says: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_says,definition,
% 0.21/0.50      ( icl_says
% 0.21/0.50      = ( ^ [A: $i > $o,S: $i > $o] : ( mbox @ rel @ ( mor @ A @ S ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----An ICL formula is K-valid if its translation into modal logic is valid
% 0.21/0.50  thf(iclval_decl_type,type,
% 0.21/0.50      iclval: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(icl_s4_valid,definition,
% 0.21/0.50      ( iclval
% 0.21/0.50      = ( ^ [X: $i > $o] : ( mvalid @ X ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.51  %----Include axioms for ICL notions of validity wrt S4
% 0.21/0.51  %------------------------------------------------------------------------------
% 0.21/0.51  %----We add the reflexivity and the transitivity axiom to obtain S4.
% 0.21/0.51  thf(refl_axiom,axiom,
% 0.21/0.51      ! [A: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ rel @ A ) @ A ) ) ).
% 0.21/0.51  
% 0.21/0.51  thf(trans_axiom,axiom,
% 0.21/0.51      ! [B: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ rel @ B ) @ ( mbox @ rel @ ( mbox @ rel @ B ) ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %------------------------------------------------------------------------------
% 0.21/0.51  %------------------------------------------------------------------------------
% 0.21/0.51  %----The prinicpals
% 0.21/0.51  thf(admin,type,
% 0.21/0.51      admin: $i > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(bob,type,
% 0.21/0.51      bob: $i > $o ).
% 0.21/0.51  
% 0.21/0.51  %----The atoms
% 0.21/0.51  thf(deletfile1,type,
% 0.21/0.51      deletefile1: $i > $o ).
% 0.21/0.51  
% 0.21/0.51  %----The axioms of the example problem; here we state them only for
% 0.21/0.51  %----iclb_s4_validity admin => false) says deletefile1)
% 0.21/0.51  thf(ax1,axiom,
% 0.21/0.51      iclval @ ( icl_says @ ( icl_impl @ ( icl_princ @ admin ) @ icl_false ) @ ( icl_atom @ deletefile1 ) ) ).
% 0.21/0.51  
% 0.21/0.51  %----(admin says ((bob => admin) says deletefile1))
% 0.21/0.51  thf(ax2,axiom,
% 0.21/0.51      iclval @ ( icl_says @ ( icl_princ @ admin ) @ ( icl_says @ ( icl_impl @ ( icl_princ @ bob ) @ ( icl_princ @ admin ) ) @ ( icl_atom @ deletefile1 ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %----(bob says deletefile1)
% 0.21/0.51  thf(ax3,axiom,
% 0.21/0.51      iclval @ ( icl_says @ ( icl_princ @ bob ) @ ( icl_atom @ deletefile1 ) ) ).
% 0.21/0.51  
% 0.21/0.51  %----We prove deletefile1
% 0.21/0.51  thf(ex3,conjecture,
% 0.21/0.51      iclval @ ( icl_atom @ deletefile1 ) ).
% 0.21/0.51  
% 0.21/0.51  %------------------------------------------------------------------------------
% 0.21/0.51  ------- convert to smt2 : /export/starexec/sandbox2/tmp/tmp.8ezmO8n7Bs/cvc5---1.0.5_22787.p...
% 0.21/0.51  (declare-sort $$unsorted 0)
% 0.21/0.51  (declare-fun tptp.current_world () $$unsorted)
% 0.21/0.51  (declare-fun tptp.prop_a ($$unsorted) Bool)
% 0.21/0.51  (declare-fun tptp.prop_b ($$unsorted) Bool)
% 0.21/0.51  (declare-fun tptp.prop_c ($$unsorted) Bool)
% 0.21/0.51  (declare-fun tptp.mfalse ($$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mfalse (lambda ((X $$unsorted)) false)))
% 0.21/0.51  (declare-fun tptp.mtrue ($$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mtrue (lambda ((X $$unsorted)) true)))
% 0.21/0.51  (declare-fun tptp.mnot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mnot (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))
% 0.21/0.51  (declare-fun tptp.mor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mor (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))
% 0.21/0.51  (declare-fun tptp.mand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mand (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))
% 0.21/0.51  (declare-fun tptp.mimpl ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mimpl (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot U)) V) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.miff ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.miff (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimpl U) V)) (@ (@ tptp.mimpl V) U)) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mbox ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (forall ((Y $$unsorted)) (=> (@ (@ R X) Y) (@ P Y))))))
% 0.21/0.51  (declare-fun tptp.mdia ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (exists ((Y $$unsorted)) (and (@ (@ R X) Y) (@ P Y))))))
% 0.21/0.51  (declare-sort tptp.individuals 0)
% 0.21/0.51  (declare-fun tptp.mall ((-> tptp.individuals $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mall (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.individuals)) (@ (@ P X) W)))))
% 0.21/0.51  (declare-fun tptp.mexists ((-> tptp.individuals $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mexists (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (exists ((X tptp.individuals)) (@ (@ P X) W)))))
% 0.21/0.57  (declare-fun tptp.mvalid ((-> $$unsorted Bool)) Bool)
% 0.21/0.57  (assert (= tptp.mvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ P W)))))
% 0.21/0.57  (declare-fun tptp.msatisfiable ((-> $$unsorted Bool)) Bool)
% 0.21/0.57  (assert (= tptp.msatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ P W)))))
% 0.21/0.57  (declare-fun tptp.mcountersatisfiable ((-> $$unsorted Bool)) Bool)
% 0.21/0.57  (assert (= tptp.mcountersatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ P W))))))
% 0.21/0.57  (declare-fun tptp.minvalid ((-> $$unsorted Bool)) Bool)
% 0.21/0.57  (assert (= tptp.minvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ P W))))))
% 0.21/0.57  (declare-fun tptp.rel ($$unsorted $$unsorted) Bool)
% 0.21/0.57  (declare-fun tptp.icl_atom ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_atom (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) P) __flatten_var_0))))
% 0.21/0.57  (declare-fun tptp.icl_princ ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_princ (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ P __flatten_var_0))))
% 0.21/0.57  (declare-fun tptp.icl_and ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_and (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand A) B) __flatten_var_0))))
% 0.21/0.57  (declare-fun tptp.icl_or ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_or (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor A) B) __flatten_var_0))))
% 0.21/0.57  (declare-fun tptp.icl_impl ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_impl (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mimpl A) B)) __flatten_var_0))))
% 0.21/0.57  (declare-fun tptp.icl_true ($$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_true tptp.mtrue))
% 0.21/0.57  (declare-fun tptp.icl_false ($$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_false tptp.mfalse))
% 0.21/0.57  (declare-fun tptp.icl_says ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.icl_says (lambda ((A (-> $$unsorted Bool)) (S (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mor A) S)) __flatten_var_0))))
% 0.21/0.57  (declare-fun tptp.iclval ((-> $$unsorted Bool)) Bool)
% 0.21/0.57  (assert (= tptp.iclval (lambda ((X (-> $$unsorted Bool))) (@ tptp.mvalid X))))
% 0.21/0.57  (assert (forall ((A (-> $$unsorted Bool))) (@ tptp.mvalid (@ (@ tptp.mimpl (@ (@ tptp.mbox tptp.rel) A)) A))))
% 0.21/0.57  (assert (forall ((B (-> $$unsorted Bool))) (let ((_let_1 (@ tptp.mbox tptp.rel))) (let ((_let_2 (@ _let_1 B))) (@ tptp.mvalid (@ (@ tptp.mimpl _let_2) (@ _let_1 _let_2)))))))
% 0.21/0.57  (declare-fun tptp.admin ($$unsorted) Bool)
% 0.21/0.57  (declare-fun tptp.bob ($$unsorted) Bool)
% 0.21/0.57  (declare-fun tptp.deletefile1 ($$unsorted) Bool)
% 0.21/0.57  (assert (@ tptp.iclval (@ (@ tptp.icl_says (@ (@ tptp.icl_impl (@ tptp.icl_princ tptp.admin)) tptp.icl_false)) (@ tptp.icl_atom tptp.deletefile1))))
% 0.21/0.57  (assert (let ((_let_1 (@ tptp.icl_princ tptp.admin))) (@ tptp.iclval (@ (@ tptp.icl_says _let_1) (@ (@ tptp.icl_says (@ (@ tptp.icl_impl (@ tptp.icl_princ tptp.bob)) _let_1)) (@ tptp.icl_atom tptp.deletefile1))))))
% 0.21/0.57  (assert (@ tptp.iclval (@ (@ tptp.icl_says (@ tptp.icl_princ tptp.bob)) (@ tptp.icl_atom tptp.deletefile1))))
% 0.21/0.57  (assert (not (@ tptp.iclval (@ tptp.icl_atom tptp.deletefile1))))
% 0.21/0.57  (set-info :filename cvc5---1.0.5_22787)
% 0.21/0.57  (check-sat-assuming ( true ))
% 0.21/0.57  ------- get file name : TPTP file name is SWV436^4
% 0.21/0.57  ------- cvc5-thf : /export/starexec/sandbox2/solver/bin/cvc5---1.0.5_22787.smt2...
% 0.21/0.57  --- Run --ho-elim --full-saturate-quant at 10...
% 0.21/0.57  % SZS status Theorem for SWV436^4
% 0.21/0.57  % SZS output start Proof for SWV436^4
% 0.21/0.57  (
% 0.21/0.57  (let ((_let_1 (@ tptp.icl_atom tptp.deletefile1))) (let ((_let_2 (not (@ tptp.iclval _let_1)))) (let ((_let_3 (@ tptp.icl_princ tptp.bob))) (let ((_let_4 (@ tptp.iclval (@ (@ tptp.icl_says _let_3) _let_1)))) (let ((_let_5 (@ tptp.icl_princ tptp.admin))) (let ((_let_6 (@ tptp.iclval (@ (@ tptp.icl_says _let_5) (@ (@ tptp.icl_says (@ (@ tptp.icl_impl _let_3) _let_5)) _let_1))))) (let ((_let_7 (@ tptp.iclval (@ (@ tptp.icl_says (@ (@ tptp.icl_impl _let_5) tptp.icl_false)) _let_1)))) (let ((_let_8 (forall ((A (-> $$unsorted Bool))) (@ tptp.mvalid (@ (@ tptp.mimpl (@ (@ tptp.mbox tptp.rel) A)) A))))) (let ((_let_9 (= tptp.iclval (lambda ((X (-> $$unsorted Bool))) (@ tptp.mvalid X))))) (let ((_let_10 (= tptp.icl_says (lambda ((A (-> $$unsorted Bool)) (S (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mor A) S)) __flatten_var_0))))) (let ((_let_11 (= tptp.icl_false tptp.mfalse))) (let ((_let_12 (= tptp.icl_true tptp.mtrue))) (let ((_let_13 (= tptp.icl_impl (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mimpl A) B)) __flatten_var_0))))) (let ((_let_14 (= tptp.icl_or (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor A) B) __flatten_var_0))))) (let ((_let_15 (= tptp.icl_and (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand A) B) __flatten_var_0))))) (let ((_let_16 (= tptp.icl_princ (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ P __flatten_var_0))))) (let ((_let_17 (= tptp.icl_atom (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) P) __flatten_var_0))))) (let ((_let_18 (= tptp.minvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ P W))))))) (let ((_let_19 (= tptp.mcountersatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ P W))))))) (let ((_let_20 (= tptp.msatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ P W)))))) (let ((_let_21 (= tptp.mvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ P W)))))) (let ((_let_22 (= tptp.mexists (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (exists ((X tptp.individuals)) (@ (@ P X) W)))))) (let ((_let_23 (= tptp.mall (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.individuals)) (@ (@ P X) W)))))) (let ((_let_24 (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (exists ((Y $$unsorted)) (and (@ (@ R X) Y) (@ P Y))))))) (let ((_let_25 (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (forall ((Y $$unsorted)) (=> (@ (@ R X) Y) (@ P Y))))))) (let ((_let_26 (= tptp.miff (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimpl U) V)) (@ (@ tptp.mimpl V) U)) __flatten_var_0))))) (let ((_let_27 (= tptp.mimpl (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot U)) V) __flatten_var_0))))) (let ((_let_28 (= tptp.mand (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))) (let ((_let_29 (= tptp.mor (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))) (let ((_let_30 (= tptp.mnot (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))) (let ((_let_31 (= tptp.mtrue (lambda ((X $$unsorted)) true)))) (let ((_let_32 (= tptp.mfalse (lambda ((X $$unsorted)) false)))) (let ((_let_33 (ho_4 k_3 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_34 (ho_2 _let_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_35 (forall ((W $$unsorted) (Y $$unsorted)) (not (ho_2 (ho_4 k_3 W) Y))))) (let ((_let_36 (forall ((BOUND_VARIABLE_1645 |u_(-> $$unsorted Bool)|) (W $$unsorted)) (or (not (forall ((Y $$unsorted)) (or (not (ho_2 (ho_4 k_3 W) Y)) (ho_2 BOUND_VARIABLE_1645 Y)))) (ho_2 BOUND_VARIABLE_1645 W))))) (let ((_let_37 (EQ_RESOLVE (ASSUME :args (_let_32)) (MACRO_SR_EQ_INTRO :args (_let_32 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_38 (EQ_RESOLVE (ASSUME :args (_let_31)) (MACRO_SR_EQ_INTRO :args (_let_31 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_39 (ASSUME :args (_let_30)))) (let ((_let_40 (ASSUME :args (_let_29)))) (let ((_let_41 (ASSUME :args (_let_28)))) (let ((_let_42 (EQ_RESOLVE (ASSUME :args (_let_27)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_27 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_43 (EQ_RESOLVE (ASSUME :args (_let_26)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_26 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_44 (EQ_RESOLVE (ASSUME :args (_let_25)) (MACRO_SR_EQ_INTRO :args (_let_25 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_45 (EQ_RESOLVE (ASSUME :args (_let_24)) (MACRO_SR_EQ_INTRO :args (_let_24 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_46 (ASSUME :args (_let_23)))) (let ((_let_47 (EQ_RESOLVE (ASSUME :args (_let_22)) (MACRO_SR_EQ_INTRO :args (_let_22 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_48 (ASSUME :args (_let_21)))) (let ((_let_49 (EQ_RESOLVE (ASSUME :args (_let_20)) (MACRO_SR_EQ_INTRO :args (_let_20 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_50 (EQ_RESOLVE (ASSUME :args (_let_19)) (MACRO_SR_EQ_INTRO :args (_let_19 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_51 (ASSUME :args (_let_18)))) (let ((_let_52 (EQ_RESOLVE (ASSUME :args (_let_17)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_17 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_53 (ASSUME :args (_let_16)))) (let ((_let_54 (EQ_RESOLVE (ASSUME :args (_let_15)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_15 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_55 (EQ_RESOLVE (ASSUME :args (_let_14)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_14 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_56 (EQ_RESOLVE (ASSUME :args (_let_13)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_13 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_57 (EQ_RESOLVE (SYMM (ASSUME :args (_let_12))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args ((= tptp.mtrue tptp.icl_true) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_58 (EQ_RESOLVE (SYMM (ASSUME :args (_let_11))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args ((= tptp.mfalse tptp.icl_false) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_59 (EQ_RESOLVE (ASSUME :args (_let_10)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_10 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_60 (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_9 SB_DEFAULT SBA_FIXPOINT))) _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37))) (let ((_let_61 (EQ_RESOLVE (ASSUME :args (_let_8)) (TRANS (MACRO_SR_EQ_INTRO _let_60 :args (_let_8 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((A (-> $$unsorted Bool)) (W $$unsorted)) (or (not (forall ((Y $$unsorted)) (or (not (@ (@ tptp.rel W) Y)) (@ A Y)))) (@ A W))) _let_36))))))) (let ((_let_62 (_let_36))) (let ((_let_63 ((not (= (ho_2 BOUND_VARIABLE_1645 W) true))))) (let ((_let_64 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_61 :args (_let_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_63)) :args _let_62))) _let_61 :args (_let_34 false _let_36)))) (let ((_let_65 (forall ((BOUND_VARIABLE_1369 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1369) BOUND_VARIABLE_1369)) (not (ho_2 k_6 BOUND_VARIABLE_1369)))))) (let ((_let_66 (forall ((BOUND_VARIABLE_1400 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1400) BOUND_VARIABLE_1400)) (ho_2 k_5 BOUND_VARIABLE_1400))))) (let ((_let_67 (ho_2 k_6 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_68 (not _let_67))) (let ((_let_69 (not _let_34))) (let ((_let_70 (or _let_69 _let_68))) (let ((_let_71 (not _let_70))) (let ((_let_72 (ho_2 k_7 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_73 (not _let_72))) (let ((_let_74 (or _let_69 _let_73 _let_67))) (let ((_let_75 (forall ((BOUND_VARIABLE_1473 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1473) BOUND_VARIABLE_1473)) (not (ho_2 k_7 BOUND_VARIABLE_1473)) (ho_2 k_6 BOUND_VARIABLE_1473))))) (let ((_let_76 (forall ((BOUND_VARIABLE_1508 $$unsorted)) (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1508) BOUND_VARIABLE_1508))))) (let ((_let_77 (forall ((W $$unsorted) (Y $$unsorted)) (or (not (ho_2 (ho_4 k_3 W) Y)) (ho_2 k_6 Y))))) (let ((_let_78 (or _let_69 _let_67))) (let ((_let_79 (or _let_69 _let_72))) (let ((_let_80 (forall ((W $$unsorted) (Y $$unsorted)) (or (not (ho_2 (ho_4 k_3 W) Y)) (ho_2 k_7 Y))))) (let ((_let_81 (forall ((BOUND_VARIABLE_1553 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1553) BOUND_VARIABLE_1553)) (ho_2 k_5 BOUND_VARIABLE_1553))))) (let ((_let_82 (ho_2 k_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9))) (let ((_let_83 (ho_4 k_3 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9))) (let ((_let_84 (ho_2 _let_83 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9))) (let ((_let_85 (not _let_84))) (let ((_let_86 (or _let_85 _let_82))) (let ((_let_87 (not _let_86))) (let ((_let_88 (or (not (ho_2 _let_33 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9)) _let_82))) (let ((_let_89 (forall ((W $$unsorted) (Y $$unsorted)) (or (not (ho_2 (ho_4 k_3 W) Y)) (ho_2 k_5 Y))))) (let ((_let_90 (not _let_88))) (let ((_let_91 (not _let_89))) (let ((_let_92 (EQ_RESOLVE (ASSUME :args (_let_2)) (TRANS (MACRO_SR_EQ_INTRO _let_60 :args (_let_2 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((W $$unsorted) (Y $$unsorted)) (or (not (@ (@ tptp.rel W) Y)) (@ tptp.deletefile1 Y)))) _let_91))))))) (let ((_let_93 (_let_66))) (let ((_let_94 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_93) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (ho_2 k_5 BOUND_VARIABLE_1400) true))))) :args _let_93)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_86)) :args ((or _let_82 _let_85 _let_87))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_88 1)) (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_92) :args (_let_91))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_91) _let_89))) (REFL :args (_let_90)) :args (or))) _let_92 :args (_let_90 true _let_89)) :args ((not _let_82) true _let_88)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_61 :args (_let_83 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 QUANTIFIERS_INST_E_MATCHING_SIMPLE _let_63)) :args _let_62))) _let_61 :args (_let_84 false _let_36)) :args (_let_87 true _let_82 false _let_84)) :args ((not _let_66) true _let_86)))) (let ((_let_95 (_let_80))) (let ((_let_96 (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_CBQI_CONFLICT))) (let ((_let_97 (_let_75))) (let ((_let_98 (_let_76))) (let ((_let_99 (forall ((BOUND_VARIABLE_1400 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1400) BOUND_VARIABLE_1400)) (@ tptp.deletefile1 BOUND_VARIABLE_1400))))) (let ((_let_100 (_let_77))) (let ((_let_101 (_let_65))) (let ((_let_102 (_let_35))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_102) :args _let_96) :args _let_102)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (ASSUME :args (_let_7)) (TRANS (MACRO_SR_EQ_INTRO _let_60 :args (_let_7 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (or (forall ((BOUND_VARIABLE_1369 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1369) BOUND_VARIABLE_1369)) (not (@ tptp.admin BOUND_VARIABLE_1369)))) _let_99 (forall ((W $$unsorted) (Y $$unsorted)) (not (@ (@ tptp.rel W) Y)))) (or _let_65 _let_66 _let_35)))))) :args ((or _let_35 _let_66 _let_65))) _let_94 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_101) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((ho_4 k_3 BOUND_VARIABLE_1369)))) :args _let_101)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_70)) :args ((or _let_69 _let_68 _let_71))) _let_64 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_100) :args _let_96) :args _let_100)) (REORDERING (CNF_OR_POS :args (_let_78)) :args ((or _let_69 _let_67 (not _let_78)))) _let_64 (REORDERING (EQ_RESOLVE (ASSUME :args (_let_6)) (TRANS (MACRO_SR_EQ_INTRO _let_60 :args (_let_6 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (or (forall ((BOUND_VARIABLE_1473 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1473) BOUND_VARIABLE_1473)) (not (@ tptp.bob BOUND_VARIABLE_1473)) (@ tptp.admin BOUND_VARIABLE_1473))) _let_99 (forall ((BOUND_VARIABLE_1508 $$unsorted)) (not (@ (@ tptp.rel BOUND_VARIABLE_1508) BOUND_VARIABLE_1508))) (forall ((W $$unsorted) (Y $$unsorted)) (or (not (@ (@ tptp.rel W) Y)) (@ tptp.admin Y)))) (or _let_75 _let_66 _let_76 _let_77)))))) :args ((or _let_66 _let_77 _let_76 _let_75))) _let_94 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_98) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_98)) _let_64 :args ((not _let_76) false _let_34)) (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_97) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((ho_4 k_3 BOUND_VARIABLE_1473)))) :args _let_97)) (REORDERING (CNF_OR_POS :args (_let_74)) :args ((or _let_69 _let_67 _let_73 (not _let_74)))) _let_64 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_79)) :args ((or _let_69 _let_72 (not _let_79)))) _let_64 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_95) :args _let_96) :args _let_95)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (ASSUME :args (_let_4)) (TRANS (MACRO_SR_EQ_INTRO _let_60 :args (_let_4 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (or (forall ((BOUND_VARIABLE_1553 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1553) BOUND_VARIABLE_1553)) (@ tptp.deletefile1 BOUND_VARIABLE_1553))) (forall ((W $$unsorted) (Y $$unsorted)) (or (not (@ (@ tptp.rel W) Y)) (@ tptp.bob Y)))) (or _let_81 _let_80)))))) :args ((or _let_80 _let_81))) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM2 (ALPHA_EQUIV :args (_let_66 (= BOUND_VARIABLE_1400 BOUND_VARIABLE_1553)))) _let_94 :args ((not _let_81) true _let_66)) :args (_let_80 true _let_81)) :args (_let_79 false _let_80)) :args (_let_72 false _let_34 false _let_79)) :args (_let_67 true _let_78 false _let_34 false _let_77 true _let_66 true _let_76 true _let_75 true _let_74 false _let_34 false _let_72)) :args (_let_71 false _let_34 false _let_67)) :args ((not _let_65) true _let_70)) :args (_let_35 true _let_66 true _let_65)) _let_64 :args (false false _let_35 false _let_34)) :args (_let_32 _let_31 _let_30 _let_29 _let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21 _let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 (forall ((B (-> $$unsorted Bool))) (let ((_let_1 (@ tptp.mbox tptp.rel))) (let ((_let_2 (@ _let_1 B))) (@ tptp.mvalid (@ (@ tptp.mimpl _let_2) (@ _let_1 _let_2)))))) _let_7 _let_6 _let_4 _let_2 true)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.21/0.57  )
% 0.21/0.57  % SZS output end Proof for SWV436^4
% 0.21/0.57  % cvc5---1.0.5 exiting
% 0.21/0.57  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------